Flayer: Exposing Application Internals *

Will Drewry and Tavis Ormandy
Google, Inc.
{wad,tavis¢ @google.com

Abstract from undefined memory use [21] to signedness conver-
. , sion errors [15] to unbounded memory access [32]. In
, Flayer is a tool for dyngm|cally exposing appllgann addition, symbolic evaluation and analysis frameworks,
innards for security testing and.analysus. lt. is imple- o EXE [8] and SAGE[12], and other multiple ex-
mented on the dynamlc binary instrumentation frame-a.ution path analysis tools [16], have begun to aug-
work Valgrind[17] and its memory error detection plug- 1ot this effort through the automated generation of dan-
in, Memcheck21]. This paper focuses on the implemen- qo,5 input. While execution path, or flow, analysis
tation of Flayer, its supporting libraries, and their appli techniques have been in use for over three decades [7],
cation to soﬂware ses:unty. practical analysis tools for white box testing and audit-
_Flayer provides tainted, or marked, data flow analy-jng scenarios have only recently become commonplace
sis and instrumentation mechanisms for arbitrarily alter-[15] [12] [8] [32] [19].
ing that flow. Flayer improves upon prior taint tracing This paper presen@layer, an execution flow analy-

o ih D ez, POpagaton CAGUSIOnS s anc oo ol and acomplementi s
. b -9 °Ing [14] technique. Flayer is implemented as a plug-in
ter operation. These calculations are embedded in th g [14] d y b bug

target application’s running code using dynamic instru 0 the dynamic binary instrumentation framewaél-
get app 9 9 dy rind [17] using core functionality from its memory error
mentation. The same technique has been employed to ag—

low the user to control the outcome of conditional jumps etection plug-inMemcheck21]. It traces the flow of
W u . u . jump tainted, or marked, input data through an application dur-
and step over function calls.

| S f ionali ” bust foundation f ing execution and logs the traversal of conditional jumps
h F_ayelrs unctiona 'tfy provides a :0 US(; ou?] ationfor g system calls. Recent works, suchaasodaé [32]
the implementation of security tools and techniques. In,,gva1garf19], also rely on understanding input flow
particular, this paper presents an effective fault ingacti

: hni d ion libragbFl through a process. However, these tools use input pattern
testing technique and an automation librdriFlayer. matching techniques for taint tracing which lack the ac-

Alongside these contributions, it explores techniques forCuracy of Flayer's dynamic binary instrumentation based
vg!nerability patch analysis and guided source code auépproach. Flayer improves on existing taint tracing soft-
diting. . _ ware, like TaintChecK18] andCatchcon\[15], through
Flayer finds errors in real software. In the past year, itshe addition of bit-precise taint propagation. This pre-
use has yielded the expedient discovery of flaws in secugjsion allows for taintedness to propagate into bitfields
rity critical software including OpenSSH and OpenSSL. 54 pit arrays creating a more accurate view of the im-
pact input has on an application’s execution. Further-
more, Flayer is not solely a taint tracing tool. It also
provides the ability to redirect the flow irrespective of in-

VUl bilit ften | di di fware due t put. Flayer can instrument the outcome of conditional
uinerabiilies often fay undiscovered in software due 0jumps and function calls in the execution path based on

the complexity of the code paths leading to them. Re; ser-supplied arguments. In addition, a library for au-
cent tools attempt to understand these paths and moéJ

ify running application code, detecting flaws ranging

1 Introduction

omated execution and output processinidpFlayer, is
available for use along with an interactive shell interface

*First presented at the WOOT'07 First USENIX Workshop on Of- FIayerSh fo_r ea_‘sy human interaction.))
fensive Technologies. The application of Flayer’s flow tracing and alteration

functionality, flaying, provides a means to directly ex- checks if the source file descriptor is tainted and appro-
pose code obscured behind complex code paths for dipriately marks the destination memory addresses. In ad-
rect testing. This approach combined with random fuzzdition, r ecvnsg andr ecvf r omare instrumented in
testing results in a lightweight, yet effective testingitec the same manner. File descriptor-based tainting is man-
nique. aged in two ways. If standard input tainting is speci-
fied, data originating from file descriptdr is tainted.

For network and file tainting, file descriptor tracking
is handled through the instrumentation of the follow-
The remainder of this paper discusses Flayer, its impleing system callsopen, socket , connect , accept,
mentation and applications. Section 2 covers the detailedocket pai r, andcl ose. When the data sourced
implementation of Flayer. Section 3 introduces a newfrom the file system is to be taintedpen controls
fuzz testing technique. Section 4 discusses other techwhether a file descriptor is marked as providing tainted
niques enabled through the use of Flayer and its supportiata. By default, if file tainting is enabled, all file de-
ing libraries. Section 5 provides real world experiencesscriptors opened wittopen will be marked. When a
where the presented software and techniques have sutile descriptor is closed witlcl ose, it is unmarked
cessfully discovered security-related application flaws.as providing tainted data. However, tainting all input
Section 6 details the possibilities for future work, andfrom open file descriptors may taint a large amount of
Section 7 gives the conclusions drawn. data as shared libraries are loaded and files are read
by the target application. The command line argument
--file-filter existsto mitigate this problem. The
argument takes a string which specifies a path prefix to
. the desired file, or files, to be tainted. This allows for tar-
2.1 Foundation geted tainting of file input data. Unfortunately, there are
Flayer is implemented as a plug-in to Valgrind, a frame-n0 su<_:h filters_ for network tainting. If enabledZ all net-
work for instrumenting machine code at runtime. In work file descriptors are assumed to produce tainted data.
particular, it is based upon functionality from Mem- Usually, this is not a burden given that network opera-
check. Memcheck is a Valgrind plug-in that provides t|9ns are notfundgmental to proces§|n|t|allzat|on. Along
four types of memory error detection: byte-level addressWith system call instrumentation, taint may be assigned
ability, heap allocations, memory block argument c,Ver_through one othgr mechanism: cI_|ent caIIs_. Va_Igrlnd pro-
lapping, and definedness checking. Of these, definedne¥ides a mechanism where special machine instructions
checking was the basis for Flayer’s taint propagation feaMay be inserted into an application, or library, at com-
ture. Other functionality provided directly by Valgrind Pilé time through the use of C macros. Usually used from
was leveraged for implementing taint sources and contropréloaded shared objects, these client calls may taint, un-
flow alteration. In addition, Valgrind’s default error out- taint, or examine chunks of application memory.

put and robust command line argument handling mech- The propagation dhintednesswhether data is tainted
anisms enabled easy automation with a simple wrappesr not, is largely implemented using the undefinedness

1.1 Paper structure

2 Flayer

library, LibFlayer. propagation technique implemented in Memcheck. In
this technique, all bits in memory and registers have as-
2.2 Bit-precision taint tracing sociated bits of metadata, shadow bits, which track taint-

edness. Furthermore, each value-creating memory oper-

Tainting is the process of tagging data with metadataation has a shadow operation which calculates the taint-
that is propagated when that data is involved in a valueedness of the result. This direct memory propagation ap-
creating operation. The implementation of bit-precisionproach performs the majority of the taintedness propa-
taint tracing may be divided into three logical pieces: ini- gation. Flayer also implements an indirect technique to
tial taint assignment, taint propagation and notification,further expand coverage. Flayer preloads a shared library
and taint removal. that replaces several functions in the target application

Taint is assigned to data based on the data sourceghich operate on strings and raw memost:r nl en,
specified on the command line. The following sourcesst r| en, st r ncnp, st r cnp, mencnp, andbcnp. In
are supported: network, file, and stdin. All data originat-practice, these functions operate on memory that may be
ing from the network, the file system, or standard inputtainted but will not propagate taintedness to their return
are tainted through the instrumentation of system callsralue because that value is not the direct result of a mem-
made by the target application. In most cases, this i®ry operation. For examples = y + 1 results inx
handled by the ead system call. As data enters the ap- being tainted ify is tainted. However, in the following
plication via this kernel interface, the instrumented callexampld en will not be tainted even i§ is:

char *c =s; size t len = 0; takes a similar formatte- al t er - br anch exceptthat
for(; *c; c++) { len++; } the value may be any 32-bit integer. The address sup-
return | en; plied is not that of the function to be skipped, but in-
While it is clear to a human that the final value storedStead’ the address where the function is called. At this
in I en is based completely on the contentssofdirect address, Flayer adds two instructions. The first sets the
memory-to-memory gropa)g/;ation cannot address the si value of the EAX register to the 32-bit value supplied in
uation. To work around this, the replacement functionsthe comm_and_lme arg_ument. The secon_d ISajump tothe
listed make use of client calls to determine if the sourceneXt physical instruction after the call site. This forces
memory is tainted and taint the return value appropri_the function call to be bypassed while still providing a
ately. If these functions have been inlined, or customCOntrOIIabIe return value.
equivalents are used, the preloaded versions will not be
used and taintedness will not propagate indirectly. 2.4 LibFlayer

Taintedness propagation functions generate external.))) .
notification messages. Given that Memcheck already re-iPFlayer is a Python library which provides a program-

ports on traversed conditional jumps, system call argu-matic interface to Flayer. It is comprised of several com-

ment usage, memory access, and SIMD or FP registé?onents' the most important of which is the Flayer class.

memory loads, Flayer inherited output that is sufficiently The Elayer class is the core interface of th.e library.
rich without the addition of further messages. It supplies the getters and setters for managing Flayer
Memory must be untainted when it no longer con- command line arguments and provides interfaces for in-

tains a tainted value to avoid false positives. In mostieracting with parsed output. Through these interfaces it

cases, memory is untainted through the taint propagatiol? p053|bl<_e to specify what mp_u_t type_ to taint, what file
code. If an untainted value is written directly to a tainted paths to filter, and what conditional jump addresses to

memory location, that location will become untainted. Modify. The interface can be used directly or wrapped
Memory is also untainted when it is allocated or freedfurther for higher levels of abstraction. One such wrap-

on the heap throughml | oc/f r ee wrapper functions. per provides the interactive shell interface used by Flay-

All other cases are handled through Valgrind callbacks€rSh- In addition, some effort has been invested in

stack creation, stack destruction, and client calls. 'It_hsFallutomated exploration of execution path trees using
ibFlayer.

2.3 Execution path alteration

. 3 A new fuzz testing technique
Flayer alters a target program’s execution path through

direc'g instrumenftation of its machine code, a practice3_1 Background
classically used in software cracking. In particular, two
types of alterations are possible: forcing conditionalRandom fault injection-based testing, or fuzz testing, is
jumps and stepping over function calls. The instrumentathe technique of supplying random input to an applica-
tion occurs after machine code is translated to Valgrind’sion with the intent of discovering an unseen, and poten-
intermediate representation (IR) and before it is transtially dangerous, code path. Traditional fuzz testing is
lated back to machine code. often underutilized due to its inherent limitations. Inpar
Conditional jump alteration is controlled by the ticular, exhaustive testing of an application’s input spac
--alter-branch command line argument. This quickly becomes infeasible. Fuzz testing one or two
argument takes a comma-separated list of instrucbytes may not be prohibitive, but testing even a small set
tion pointer and value pairs joined by colons, e.g.of 500 bytes require2z®*5°Y combinations to completely
--al ter-branch=0x8080: 1, 0x9090: 0. The exercise the input space.
value specified after the instruction pointer is that of the While there are many specialized techniques to mit-
guard of the conditional jump. A value & indicates igate this exponential explosion of combinations, two
that the branch should not be followed while a value ofgeneralized practices have arisen. The first is block-
1 will result in the branch being followed. This behavior based [4], or format aware, fuzz testirgpike[5], PRO-
occurs irrespective of the values involved in the condi-TOS[20], and Peach[11], among others, use this ap-
tional itself. Any conditional jump may be altered using proach to limit the randomness in the data to just the
this technique regardless of whether it is visible duringmutation of format-specific components. This approach
taint analysis. has shown its efficacy [4] but requires a substantial ini-
In addition to forcing conditional jump outcomes, tial investment in the form of extensive format specifica-
Flayer allows function calls to be stepped over using theion. Even in systems where this specification is gen-
- -al ter-fncommand line argument. This argument erated automatically [32] [6], fuzz testing based on a

protocol definition may not exercise code from undoc-flaying. It does not require a protocol aware input gener-
umented features or proprietary vendor extensions andtor, a large testing harness, or any input selection work.
may waste significant resources testing unimplementethstead, a time investment is required when a crash con-
specification features. For example, consider testing dition is uncovered. The auditor must spend time creat-
HTTP server. WebDAV [13] alone adds nine new HTTP ing viable input or determining if the bug is unreachable
methods in addition to multiple new HTTP headers. Thein normal circumstances.
combination of these HTTP methods, headers, and their Flaying is an iterative process for increasing the reach-
arguments takes a substantial time to explore regardlessgility of complex application code by removing the
of whether the server supports the functionality. outer layers of application defenses. Initially, an audi-

The second technique is exemplified in the work bytor must supply random input to a target application and
Vuagnoux called autodafé [32], as well as Pusscat'sanalyze the resulting taint tracing output. As uninterest-
Byakugan [19]. The approach focuses on the use oing, or non-state building, sanity and error checks are
recognizable patterns in the input stream which are detraversed, they must be forcibly followed or bypassed
tected through function hijacking or frequent memory using Flayer’s flow alteration commands. This process
scanning. This technique is useful for detecting whichis repeated until the desired code is directly exposed for
pieces of input reach specific locations, but it is limited testing. Once exposed, traditional random fuzz testing is
by design. Not only is it possible for the marker text to used to uncover vulnerabilities. Upon the discovery of a
be modified beyond recognition during execution, but thevulnerability, the malicious input must be crafted by the
method itself introduces uncertainties in measurementauditor such that it will bypass the removed checks in
The values in the marker text will dictate which code an unaltered version of the software. The success of this
paths are taken and intrinsically limit the coverage. technique is discussed in Section 5.

Recently, variations on directed fuzz testing have been
introduced parallel to the work presented in this pa-
per. Jared DeMott'€volutionary Fuzzing Systefi0] $ valgrind \

uses genetic algorithms to construct viable input sets --tool =flayer \

. L . --taint-network=yes \
based on reproductive criteria driven by the amount of -_trace-chil dren=zyes \
code coverage of each successive run. It eliminates the --alter-fn=0x8A2E: 3 \
risks of wasting effort on unimplemented functionality /'usr/sbin/sshd -ddd -f \

and of failing to exercise undocumented features. Like $PVD/ sshd_config -p 2222 -D

fuzz [14], it still must overcome basic protocol input val-
idation tests. Usually, these tests are used in software
to determine the format of incoming user input. This Figure 1: Bypassing the "Protocol Mismatch” error

might be a version check similar to the protocol bannercheck on an Ubuntu Feisty OpenSSH 4.3p2-8ubuntul bi-
in OpenSSH [3] or a file format type indicator like the nary

magic check in LibTIFF [2]. While this limitation may

not affect the approach dramatically, other techniques, Fjayer may be used on an application regardless of the
inspired by fuzz testing, address this issue through apyyailability of the source code or debugging symbols.
plication flow analysis. Catchconv [15], EXE [8], and \yhjle the availability of this data will speed the flay-
SAGE [12] leverage symbolic execution to guide inputing and creation of valid input, simple heuristics work
error detection and generation. Constraints are extracteg many cases which make them unnecessary. For in-
by tracing the execution of an application on fixed in- gtance, if testing of OpenSSH’s cipher suite negotiation
put, such as a known good file. The extracted constraw_ng desirable, then it would be useful to bypass the SSH

are then explored through virtualized execution and, iNyrotocol version check. This is done in Figure 1 by step-
some cases, through repeated execution on input mutat g over asscanf call. AddresOx8A2E was identi-
based on code coverage heuristics. These approachfsy as the call site to the offending check as it preceded
have shown promising results but are limited by approxyne first tainted call to the logging function which gen-
imation errors in symbolic execution and the potential ofgrated the bad protocol version error message. Only the
poor initial input selection. I i bc symbols were used to infer this. With the check

removed, it becomes possible to build a simple test har-
3.2 Fuzzing flayed applications ness that copies data frohdgy/ ur_a.ndo_mand §ends

it to the flayedsshd. In addition, it is trivial to intro-
Fuzzing flayed applications is a lightweight testing ap-duce the required data into any payload by prepending a
proach which minimizes the initial time investment re- proper version value. While this is a simplistic example,
quired from the auditor. The only initial work required is it captures the essence of the technique.

It is worth noting that the fuzz testing of flayed ap- _ _
plications does not require Flayer. This technique was’ ggz'l‘;(zégﬁxi grla”dom of =rnd. tiff \
first performed manually through the removal of errorg g ayersh ./tiffinfo /deno/rnd. tiff
and sanity checks using interactive debugging and source>> filter(file="/deno/rnd.tiff")
code modification. However, the automation of the iter->>> run(); summar y()
ative discovery apd mod|f|cat_|on process grea}tly s_peed§:> Uni ni t Condi ti on
the use. The primary benefit of manual flaying is thejq4 frame information

ability to bypass state building statements through cod@xo 0x4051Cco TI FFC i ent Open
addition. /demo/libtiff/tif_open.c: 359
0x1 0x4051CDO TI FFO i ent Open
/demo/libtiff/tif_open.c: 359
0x2 0x4051CEO0 TI FFO i ent Open
/demo/libtiff/tif_open.c: 359
4 Further uses Ox4 0x413F6A3 _itoa_word
Oxd 0x41413B2 vfprintf

.) Oxf O0x413F6BD _itoa_word
The Flayer tool suite provides a useful feature set for==> uni ni t val ue

software auditors, developers, and maintainers. The abil-d frame information

ity to comprehend and interact with the flow of data 0x3 0x413F69B _itoa_word
L e 0x413F6B7 _itoa_word

through an application provides unigque insight into that - -

application’s operation and makes other useful securitys>> sni ppet (0x1, 2)

auditing and testing techniques possible. */ Setup the byte order handling.
*
| if (tif->tif_header.tiff_magic !=
TI FF_BI GENDI AN &&

. -, tif->tif_header.tiff_nagic !=
4.1 Guided source code auditing TI FF_LT TTLEEND! AN

>> al ter(0x0, 1)
Many of the more dangerous vulnerabilities, such as re- - -
mote execution of code, result from malicious user in-
put. Therefore, it is quite useful to determine input entry

points and input-tainted functions when auditing an ap-rigure 2: A snippet of a guided auditing session in Flay-
plication. This is where Flayer proves useful. erSh reviewing a magic checkiiffinfo (LibTIFF-3.8.2).
By running a given application, compiled with debug-
ging symbols, through Flayer with an arbitrary input set, .)
the auditor can see which conditional jumps are traversed-2 Patch and vulnerability analysis

by the data along with the containing functions. Given, - pjement to auditing and testing, Flayer and Flay-
that the direct output from Flayer is not always immedi- o g1, i, particular, prove useful when analyzing input

ately comprehensible to a human auditor, this techniquej,¢a fiow through variants of the same piece of software.
is augmented by the use of Flayersh. This scenario occurs quite frequently in both the com-
FlayerSh parses the output of Flayer providing errormercial and open source worlds: projects fork, operating
summaries, branch alteration, and source code snippgystem distributions apply different patches to the same
listing. Figure 2 provides an example session whichgriginal application, and systems become dependent on
shows a run ot i f fi nf o on random input, locations old versions of software. When vulnerabilities are an-
where tainted values were used, and the source codgounced, patches to the original source code will often
from one such use in a magic value check. Using thishot be useful to the maintainers of modified source.
She”, itis pOSSible to rapldly follow the data flow as well It is possib|e to run two instances of F|ayerSh' one
as review snippets of source code surrounding locationgn the patched original application and one on an un-
where tainted data was used. This allows for quick in'patched variant, with a known bad input. This approach
sight into the operation of the target application and im-ajiows one to review the code snippet of each of the con-
mediately displays error checking locations without thegitional jumps along the code path of both versions, and,
need for additional tools or software. if needed, to force specific behavior to locate any vulner-
FlayerSh does not replace interactive debuggers or disable code. Performing this simultaneous analysis results
assemblers, such &DB[1] or IDA Pro [9], but it does in a quick assessment of the variant's behavior.
provide a compromise between single stepping through Figure 3 provides an example of this. It shows a small
code execution and manually locating application errompiece of a FlayerSh session for a version of LibTIFF
checking code. patched for the directory offset overflow and one that

>>> # Li bTI FF 3. 8.2 unpat ched
>>> sni ppet (0x2)
* Read offset to next directory for sequential
* scans.
*/
(void) ReadOK(tif, &nextdiroff,
sizeof (uint32));

>>> # Li bTI FF 3. 8.2 patched
>>> sni ppet (0x2)

Check for integer overfl ow when
validating the dir_off, otherw se
a very high offset nay cause an
OB read and crash the client.
* -- tavi so@oogle.com 14 Jun 2006.
*/
|if (off + sizeof (uintl6) > tif->tif_size ||
of f > (U NT_MAX - sizeof (uint16))) {
TIFFErrorExt(tif->tif_clientdata, nodul e,
"%: Can not read TIFF directory count",
tif->tif_nanme);

L

} else {
toff_t off =tif->tif_diroff;

|if (off + sizeof (uintl6) > tif->tif_size) {
TIFFErrorExt (tif->tif_clientdata, nodul e,
": Can not read TIFF directory count",
tif->tif_nanme);
return (0);

>>> >>>

Figure 3: Patch analysis of LibTIFF version 3.8.2 using tMayErSh instances.

is not. In particular, it is displaying the affected tainted LibTIFF version 3.8.2 was downloaded and compiled

conditional where a safety check has been added in onwith debugging symbols. With this completed, the com-

version but is missing in the original. piled tool is run under Flayer with some random input as
seen in Figure 4.

5 Real world experience

Fuzz testing of flayed applications has been used witt? gg_;{(igﬁ‘r’]i Erla”dom of =test.tiff }
some success since the summer of 2006. This work reg val_gri nd - _t_ool =1 ayer \
sulted in the discovery of multiple vulnerabilitiesinwell - -taint-fil e=yes \

known open source applications: --file-filter=$PWD/test.tiff \
tiffinfo $PWD/test.tiff

- Seven vulnerabilities in LibTIFF version 3.8.2 were
disclosed [22] [23] [24] [25] [26] [27] [28].

- Aremote denial of service vulnerability was discov- Figure 4: Tracing random input througjffinfo
ered [30] in OpenSSH which affected all versions

before 4.4. The first run will result in an error mes-

- An out of band read was discovered [31] in libPNG S89€ about the TIFF header magic. Eg.

which affected versions 1.0.6 through 1.2.12. "Not a TIFF or MDI file, ..." In the
Flayer output, there are three tainted conditional jump

- A NULL pointer dereference was disclosed [29] in events which occur prior to the firgiri ntf call.
OpenSSL which affected all current clients. It is assumed that this call issues the error message.
In addition, FlayerSh has been used to determine iEach of these identified conditional jumps are tested
variants of LibTIFF and OpenSSH were affected by theseby supplying each instruction pointer address at which
vulnerabilities. the event occur to Flayer. One such test is shown in
Figure 5.

5.1 Finding a LibTIFF overflow

One of the recently reported vulnerabilities in LIDTIFF g val grind --t ool =f I ayer \
resulted from an unchecked integer value which had pre- --taint-file=yes \ _
viously gone unnoticed. The value was that of the TIFF --file-filter=sPWtest.tiff \
directory entry offset read directly from a supplied TIFF 8l { €~ branch=0x4049E66: 1 1
\ y entry _ ectlytro PP Jtiffinfo SPWI test. tiff
image file. This section provides a simple procedure for
finding this vulnerability with Flayer.

The first step is identifying a good test application. For

the purposes of this vulnerability,i f fi nf o is used. ~ Figure 5: Testing a tainted conditional jumptiffinfo

After some trial and error, it is possible Fuzzing flayed applications is a highly effective tech-
to circumvent the BIgTIFF and version error nique for testing binary input such as image files and
checking resulting in a different error message:some network protocols. The values supplied by gener-
"Can not read TIFF directory count”. ating random data frorthdev/ ur andomwill fully ex-
With the version checks cleared, the directory countercise the handlers for the incoming binary code once the
code may be exercised by the test harness provided iblocking checks are removed. However, when the input
Figure 6. format is highly structured, such as the ASCII protocol
HTTP, this coverage drops off significantly. The likeli-
hood of data originating frothdev/ ur andomgenerat-
ing valid HTTP messages is extremely low. This does not
completely discount the use of flaying and Flayer from

#!/ bi n/ bash
while /bin/true; do
dd i f=/dev/urandom\

of=test.tiff bs=1k \ these scenarios, though. Instead, the fully random data
count =1 source may be replaced with a somewhat protocol aware
V_a'_?ra: 2?_;;}2‘3' z;' et \ payload generator. While a fully protocol aware payload
file-fil ter_);$pV\D/test Ctiff generator may yield the most thorough protocol cover-
--al ter-branch="0x4049E6C: 1, age, merging Flayer with a partially protocol aware gen-
o 0x4049EA6: 1" \ erator allows for the execution path taken to be targeted.
i];lt'[f;'?”f o gt Zzt ést?' fLe 11 For example, Flayer may be used to bypass the HTTP
then: break: fi version check in order to allow for a HTTP BNF-based
done fuzzer to generate acceptable data without forcing it to
be aware of which versions of the protocol are normally
implemented.

Flayer has its own limitations. The largest of these

is that skipping sections of code, conditional jump
tﬁ)ranches or entire functions, may result in missing re-
r'quired runtime state. While this is often not a problem,

for this vulnerability, once the directory count error mes- 1 SOME cases values are derived from the source data

sage is triggered, a quick review of the source code a\{vh|ch need to fall within a small range, and that value is

the specified line number reveals an integer overflow. lnused in subsequent calculations or even memory alloca-

addition, if the auditor attempted to force the conditionalt'olns‘ (;Nhen(;_r]lc!s (i_ccu_rs, Flayerollstlefss useful antd rtnf;m-
jump with a guard value o at that location, it would ual cogde modrication 15 required fo Torce correct state.

have immediately resulted in a segmentation fault. Flaye_r suffers f_rqm another Ilmltgtlon. If 2 cond|t|onql
jump is forced, it is forced every time. When that condi-

tional jump determines whether loop should continue, it
5.2 The good and the bad is possible to lock the application in a never ending loop.

Flayer and flaying have been used extensively for real'ayer provides no mechanism yet to alter the outcome
world application auditing and fuzz testing. With use, the0f @ cond@mnql a_sp_emﬂc number of tlmgs.

strengths and weaknesses of this tool and related tech- A practlcal limitation of Flayer is thgt it does not yet
niques are clear. provide full coverage of all useful taint source system

For patch analysis and guided auditing, Flayer ha§alls. One nota_ble examp_leri$nap. Thi_s syst(_am callis
worked well for the authors’ needs, but auditing style used to map a file on the file system directly into process

is largely personal preference. With debugging Sym_memory. Surprisingly, instrumenting this system call has

bols and available source code, however, it has proved B‘?t been necessary in t_estlng and analysis done so far.
straightforward means for discovering input entry pointsG'_Ve_n that mst.rume_nt_an(.)n has been added as needed,
to an application. This allowed for targeted audits whichthis is only a minor limitation.

follow the data flow through the audited application with-

out any initial analysis of the source code. In addition,6 Future Work

the ability to step over functions and force conditionals

was useful in analyzing foreign binary behavior. Itis pos-There are many avenues left to explore with Flayer. Most
sible to guide binary analysis by indicating the addressegmmediately, Flayer’s implementation limitations should
where interesting behavior occurs and forcing that bebe removed. This includes expanding the coverage of
havior to continue. In many cases, if the target appli-tainting input vectors, adding support for conditional
cation crashes, it is possible to infer the data primitivegump alteration a controllable number of times, adding
expected by examining the resulting logs. network taint filtering, as well as adding an assignment

Figure 6: An example Flayer test harness

The test harness is simple but has proved effective wi
LibTIFF and several other tested applications. Howeve

operator to conditional jumps. In the case of an assignand OpenSSL. This software is available for public use
ment operator, instead of forcing a jump by replacing theand enhancement.

guard value, the actual tainted value would be reassigned

to the va_lu_e itis being test_ed against. This Woul_d addresy 1 Availability

state building challenges in a simple, but effective way.

Other, more challenging, work is possible. One exam-This entire tool suite is publicly available li-
ple is the addition of origin tracking of tainted memory. censed under the GPL. It can be downloaded at
There is a Memcheck code branch which supports thidittp://code.google.com/p/flayer ~ Contributions are
concept, but it does not do so in a way compatible withencouraged.

Flayer. Adding this feature to the existing tool would al-
low _further aut.omate_d analys_is and potentially, the autog Acknowledgments
matic generation of input for interesting code paths. An

alternate approach for reaching the same goal would bghanks to Google and the Google Security Team for sup-
integrating Flayer's output with a program slicing [33] porting this work and to Chris Evans whose encourage-
system. This approach would remove the need for originment motivated the creation of this paper. In addition,
tracking while still automatically generating input. the authors would like to thank Julian Seward, David

Additional work automating programmatic control \jplnar, and Chad Dougherty for kind words and useful
flow comprehension is another viable direction. Itis pos-gyidance.

sible to automate the process of flaying through brute

force flow alteration testing or through the integration

with more sophisticated systems. For instance, integral-:u':‘ferences
tion with a code goveragetoolwould allow fo.r.autornated [1] Gnu gdb. http:/fwww.gnu.org/software/gdb.
runs of Flayer with randomly selected conditional jJumps [2] Libtiff. http://http:/Avww.remotesensing. org/litt!.
to be optimized. This integration would enable a tree [3] Openssh. http://www.openssh.org.

view of the code path and provide pruning of dead end [4] D. Aitel. The advantages of block-
code paths from the analysis enhancing the quality of ~ based protocol analysis for security testing.
testing. http://www.immunitysec.com/resources-papers.shtml,

; ; ; ; 2002.
Along with these extensions, further integration of [5] D. Aitel. Spike. http://www.immunitysec.com/resoes:

Flayer with other fuzz testing techniques will yield very freesoftware.shtml, 2003,

useful results. Flayer may be used to force other fuzz g Beyond Security, Inc. Bestorm 2.0 whitepaper.

testing software to test more targeted areas of code than htp://www.beyondsecurity.com/bestanwhitepaper.html,

they were previously able to. More investigation into the September 2006.

compatibility and benefit will be explored. [7] R.S.Boyer, B. Elspas, and K. N. Levitt. Select: a formal
system for testing and debugging programs by symbolic

. execution. InProceedings of the international confer-

7 Conclusions ence on Reliable softwar@ages 234—-245, New York,
NY, USA, 1975. ACM Press.

The Flayer tool suite, built on the Valgrind framework [8] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and

using core concepts from Memcheck, should be addedto D. R. Engler. Exe: automatically generating inputs of

the toolkit of anyone who regularly performs application death. InProceedings of the 13th ACM conference on

auditing or vulnerability patch analysis. Computer and communications secuyjiages 322-335,

Flayer provides mechanisms to trace input flow Alexandria, Virginia, USA, 2006.

L I . [9] DataRescue sa/nv. lda pro.
through an application and to arbitrarily modify that http:/www.gnu.org/software/gdb.

flow. LibFlayer layers a convenient interface on Flayer. 10] 3. DeMott and Applied Security, Inc. Evolutionary

FlayerSh provides a reference tool implemented on fuzzing system. http://appliedsec.com/resources.html,
LibFlayer. This suite enables multiple security auditing May 2007.

and testing techniques, such as flaying. In concert, thesgl1] M. Eddington. Peach.
tools and techniques allow one to more effectively audit ~ http:/peachfuzz.sourceforge.net/README.txt, ~ May
software. 2004.

o : : . . [12] P. Godefroid, M. Levin, and D. Molnar. Automated
The Flayer tool suite is a starting point for application whitebox fuzz testing. Technical Report MSR-TR-2007-

auditing and analysis that requires extremely little ini- 58, Microsoft, May 2007

tial investment while yielding solid results. Even though 3] v, 'Goland, E. Whitehead, A. Faizi, S. Carter, and
Flayer is still at an early stage, its techniques have prove D. Jensen. Http extensions for distributed authoring
their efficacy through the discovery of vulnerabilities in — webdav. http://www.ietf.org/rfc/rfc2518.txt, Febryar
Internet security critical applications, such as OpenSSH 1999.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

B. Miller, L. Fredriksen, and B. So. An empirical study [32] M. Vuagnoux. Autodafé: an act of software torture.

of the reliability of unix utilities. pages 32—44, December Technical report, Swiss Federal Institute of Technology
1990. (EPFL), Cryptograhy and Security Laboratory (LASEC),
D. A. Molnar and D. Wagner. Catchconv: Symbolic exe- August 2006.

cution and run-time type inference for integer conversion [33] M. Weiser. Program Slices: Formal, Psychological, and
errors. Technical Report UCB/EECS-2007-23, EECS Practical Investigations of an Automatic Program Ab-

Department, University of California, Berkeley, Febru- straction Method PhD thesis, 1979.
ary 4 2007.
A. Moser, C. Kruegel, and E. Kirda. Exploring multi-

ple execution paths for malware analysp, 0:231-245,
2007.

N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. Rmo-
ceedings of PLDI 20Q7San Diego, California, USA,
June 2007.

J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation
of exploits on commodity software. IRroceedings of
the Network and Distributed System Security Symposium
(NDSS 2005)2005.

L. "pusscat” Grenier and LinOxx. Byakugan: Automat-
ing exploitation. InToorCon SeattlePioneer Square,
Seattle, Washington, USA, May 2007.

J. Roning, M. Lasko, A. Takanen, and R. Kaksonen. Pro-
tos - systematic approach to eliminate software vulner-
abilities. InInvited presentation at Microsoft Research
Seattle, USA, May 2002.

J. Seward and N. Nethercote. Using valgrind to deteet un
defined value errors with bit-precision. Rroceedings of
the USENIX'05 Annual Technical Conferenéamaheim,
California, USA, April 2005.

The MITRE Corporation. CVE-2006-3459.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-3459, July 2006.

The MITRE Corporation. CVE-2006-3460.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-3460, July 2006.

The MITRE Corporation. CVE-2006-3461.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-3461, July 2006.

The MITRE Corporation. CVE-2006-3462.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-3462, July 2006.

The MITRE Corporation. CVE-2006-3463.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-3463, July 2006.

The MITRE Corporation. CVE-2006-3464.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-3464, July 2006.

The MITRE Corporation. CVE-2006-3465.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-3465, July 2006.

The MITRE Corporation. CVE-2006-4343.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-4343, August 2006.

The MITRE Corporation. CVE-2006-4924.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-4924, September 2006.

The MITRE Corporation. CVE-2006-5793.
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2006-5793, November 2006.

